2019 7th International Conference on Cyber and IT Service Management (CITSM) 2019
DOI: 10.1109/citsm47753.2019.8965425
|View full text |Cite
|
Sign up to set email alerts
|

Application of Data mining to Prediction of Timeliness Graduation of Students (A Case Study)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
2

Year Published

2021
2021
2023
2023

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 5 publications
0
3
0
2
Order By: Relevance
“…By comparing with the Bayesian model, multi-layer perceptron, integrated algorithm, and decision tree algorithm, they prove the advantages of the proposed framework in student graduation prediction. Wirawan et al (2019) design experiments to predict the timeliness of graduation through the C4.5 algorithm, naive Bayes, and k-NN. As mentioned before, this kind of research has more application value than theoretical innovation.…”
Section: Methods For Predicting Difficulty In Graduationmentioning
confidence: 99%
“…By comparing with the Bayesian model, multi-layer perceptron, integrated algorithm, and decision tree algorithm, they prove the advantages of the proposed framework in student graduation prediction. Wirawan et al (2019) design experiments to predict the timeliness of graduation through the C4.5 algorithm, naive Bayes, and k-NN. As mentioned before, this kind of research has more application value than theoretical innovation.…”
Section: Methods For Predicting Difficulty In Graduationmentioning
confidence: 99%
“…Atribut prediksi terdiri dari Gender,Program Studi,Type_school ,Major_SLTA,Region, IPSmt 1, IPSmt 2, IPSmt 3, IPSmt 4, dan 1 atribut kelas yaitu graduation yang berisi klasifikasi graduation/kelulusan mahasiswa yaitu on time dan not on time.Metode yang digunakan adalah C4.5. Dari penelitian ini diperoleh tingkat akurasi algoritma C4.5 dalam memprediksi kelulusan mahasiswa sebesar 89,82% [12]. Penelitian berikutnya tentang "Analisis C4.5 Pada Klasifikasi CART Ketidaktepatan Waktu Kelulusan Mahasiswa Universitas Terbuka".…”
Section: Pendahuluanunclassified
“…Algoritma Naive Bayes adalah yang paling akurat, diikuti oleh algoritma C4.5, sedangkan algoritma RIPPER memiliki akurasi terendah. Penerapan Data mining Untuk Prediksi Ketepatan Waktu Kelulusan Mahasiswa (Wirawan et al, 2019), penelitian ini membandingkan tiga teknik penambangan data untuk memprediksi tingkat kelulusan siswa tepat waktu dan menyarankan menggunakan metode pohon keputusan untuk akurasi tertinggi. Nilai akurasi model adalah 89,82%, dan nilai presisi metode pohon keputusan adalah 52,63%.…”
Section: Tinjauan Pustakaunclassified