The synthesis of heterocycles is a fundamental area of organic chemistry that offers enormous potential for the discovery of new products with important applications in our daily life such as pharmaceuticals, agrochemicals, flavors, dyes, and, more generally, engineered materials with innovative properties. As heterocyclic compounds find application across multiple industries and are prepared in very large quantities, the development of sustainable approaches for their synthesis has become a crucial objective for contemporary green chemistry committed to reducing the environmental impact of chemical processes. In this context, the present review focuses on the recent methodologies aimed at preparing N-, O- and S-heterocyclic compounds in Deep Eutectic Solvents, a new class of ionic solvents that are non-volatile, non-toxic, easy to prepare, easy to recycle, and can be obtained from renewable sources. Emphasis has been placed on those processes that prioritize the recycling of catalyst and solvent, as they offer the dual benefit of promoting synthetic efficiency while demonstrating environmental responsibility.