Municipal solid waste (MSW) landfills in China generally have high leachate mounds, which potentially induce severe geotechnical and environmental issues. In this study, laboratory model tests were carried out to preliminarily investigate the performance of vertical drainage wells accompanied with vacuum pumping (VDW-VP) on leachate drawdown in MSW landfills with high leachate levels. Leachate drawdown tests through VDW-VP under conditions with and without gas injection were performed. Different vacuum pressures (0~−9.5 kPa) were imposed during the tests. Results indicated that the leachate pumping processes for both the two conditions were characterized by a stage of continuous effluent followed by a stage of discontinuous effluent, corresponding to the periods before and after the leachate level in the vertical well dropped to the bottom, respectively. During the stage of continuous effluent, as the vacuum pressure increased, the effluent rate decreased and the leachate level in the vertical well needed a longer time to reach the bottom. During the stage of discontinuous effluent, the leachate level in the MSW gradually approached that in the vertical well. A higher vacuum pressure rendered a larger cumulative leachate pumping volume for the condition with a gas injection, but this was not the case for the condition without a gas injection. In addition, some local pore water pressures were observed to suddenly increase and drop under the condition with the gas injection, attributed to the migration of entrapped gas zones. The increase in vacuum pressure might promote the migration of entrapped gas zones and hence increase the cumulative leachate pumping volume.