We investigated the production of 2,3-butanediol by two enterobacteria isolated from an environmental consortium, Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1, in a bioprocess using acid and enzymatic hydrolysates of soybean hull as substrates. Cultivations were carried out in orbital shaker under microaerophilic conditions, at 30 C and 37 C, for both bacteria. Both hydrolysates presented high osmotic pressures, around 2,000 mOsm/kg, with varying concentrations of glucose, xylose, and arabinose. Both bacteria were able to grow in the hydrolysates, at both temperatures, and they efficiently converted sugars into 2,3-butanediol, showing yields varying from 0.25 to 0.51 g/g of sugars and maximum 2,3-butanediol concentrations varying from 6.4 to 21.9 g/L. Other metabolic products were also obtained in lower amounts, notably ethanol, which peaked at 3.6 g/L in cultures using the enzymatic hydrolysate at 30 C. These results suggest the potential use of these recently isolated bacteria to convert lignocellulosic biomass hydrolysates into value-added products. K E Y W O R D S 2,3-butanediol, bioprocess, Klebsiella pneumoniae, lignocellulosic biomass hydrolysates, Pantoea agglomerans, soybean hull