Application of fractional exponential feature to GARCH model variants for improvement in value-at-risk prediction
Chanet Saisatian
Abstract:This research studies about using GARCH model variants as a parametric way in estimation and prediction of daily Value-at-Risk (VaR), one of famous risk measurement especially in financial world. To cope with various stylized facts on market's volatility, two mixed GARCH models are proposed in this research: HY-GJR-GARCH model, the hybrid between hyperbolic GARCH (HYGARCH) and GJR-GARCH models, and HY-MS-GARCH model as the amalgam between HYGARCH and Markov switching GARCH (MSGARCH) models. These mixed models,… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.