This paper proposes a new whole and distributed integration approach between Artificial Neural Networks (ANNs) and Databases (DBs) taking into account the different stages of the former's lifecycle (training, test and running). The integration architecture which has been developed consists of an ANN Manipulation Server (AMS) based on a clientserver approach, which improves the ANNs' manipulation and experimentation capabilities considerably, and also those of their training and test sets, together with their modular reuse among possibly remote applications. Moreover, the chances of integrating ANNs and DBs are analysed, proposing a new level of integration which improves the integration features considerably. This level has not been contemplated yet at full reach in any of the commercial or experimental tools analysed up to the present date. Finally, the application of the integration architecture which has been developed to the specific domain of Environmental Impact Assessments (EIAs) is studied. Thus, the versatility and efficacy of that architecture for developing ANNs is tested. The enormous complexity of the functioning of the patterns which rule the environment's behaviour, and the great number of variables involved, make it the ideal domain for experimenting on the application of ANNs together with DBs.