2018
DOI: 10.1109/tcbb.2016.2621042
|View full text |Cite
|
Sign up to set email alerts
|

Application of Genetic Programming (GP) Formalism for Building Disease Predictive Models from Protein-Protein Interactions (PPI) Data

Abstract: Protein-protein interactions (PPIs) play a vital role in the biological processes involved in the cell functions and disease pathways. The experimental methods known to predict PPIs require tremendous efforts and the results are often hindered by the presence of a large number of false positives. Herein, we demonstrate the use of a new Genetic Programming (GP) based Symbolic Regression (SR) approach for predicting PPIs related to a disease. In a case study, a dataset consisting of one hundred and thirty five P… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
1

Year Published

2019
2019
2025
2025

Publication Types

Select...
7
2
1

Relationship

1
9

Authors

Journals

citations
Cited by 16 publications
(10 citation statements)
references
References 71 publications
0
9
0
1
Order By: Relevance
“…Genetic programming [33]- [35] can search the structure of expression tree coding, and by virtue of its idea, the optimization mechanism can be designed to construct the hybrid model. The specific steps are as follows.…”
Section: Optimization Mechanism Of Hybrid Modelmentioning
confidence: 99%
“…Genetic programming [33]- [35] can search the structure of expression tree coding, and by virtue of its idea, the optimization mechanism can be designed to construct the hybrid model. The specific steps are as follows.…”
Section: Optimization Mechanism Of Hybrid Modelmentioning
confidence: 99%
“…Vyas, R. menciona en su investigación (Vyas et al, 2016) que para entender una enfermedad es necesario comprender los mecanismos moleculares subyacentes, como el número de interacciones proteína-proteína el cual es muy limitado en comparación con las secuencias de proteínas disponibles, enfocando su investigación a la enfermedad de diabetes mellitus, propuso un modelo basado en Máquinas de Soporte Vectorial (MSV), para clasificar las huellas estructurales y genómicas correspondientes a la enfermedad y las que no lo son, obteniendo una exactitud de clasificación del 78,2 %.…”
Section: Trabajos Relacionadosunclassified
“…The symbolic nature of GP solutions and its flexible representation make GP a very suitable approach for symbolic regression. There are many successful applications of GP for symbolic regression (Vyas et al 2018).…”
Section: Ec For Symbolic Regressionmentioning
confidence: 99%