The sweet potato is an essential food and economic crop that is often threatened by the devastating sweet potato virus disease (SPVD), especially in developing countries. Traditional laboratory-based direct detection methods and field scouting are commonly used to rapidly detect SPVD. However, these molecular-based methods are costly and disruptive, while field scouting is subjective, labor-intensive, and time-consuming. In this study, we propose a deep learning-based object detection framework to assess the feasibility of detecting SPVD from ground and aerial high-resolution images. We proposed a novel object detector called SPVDet, as well as a lightweight version called SPVDet-Nano, using a single-level feature. These detectors were prototyped based on a small-scale publicly available benchmark dataset (PASCAL VOC 2012) and compared to mainstream feature pyramid object detectors using a leading large-scale publicly available benchmark dataset (MS COCO 2017). The learned model weights from this dataset were then transferred to fine-tune the detectors and directly analyze our self-made SPVD dataset encompassing one category and 1074 objects, incorporating the slicing aided hyper inference (SAHI) technology. The results showed that SPVDet outperformed both its single-level counterparts and several mainstream feature pyramid detectors. Furthermore, the introduction of SAHI techniques significantly improved the detection accuracy of SPVDet by 14% in terms of mean average precision (mAP) in both ground and aerial images, and yielded the best detection accuracy of 78.1% from close-up perspectives. These findings demonstrate the feasibility of detecting SPVD from ground and unmanned aerial vehicle (UAV) high-resolution images using the deep learning-based SPVDet object detector proposed here. They also have great implications for broader applications in high-throughput phenotyping of sweet potatoes under biotic stresses, which could accelerate the screening process for genetic resistance against SPVD in plant breeding and provide timely decision support for production management.