The Lower Permian He 8 Member (P1h8) in the Ordos Basin is a typical producing zone of tight lithologic gas reservoirs. Analyses of sedimentary characteristics, electrofacies, and sand-body distributions of P1h8, conducted on modern fluvial deposits, outcrops, cores, and well logs, revealed that braided rivers that developed in the Lower P1h8 and Upper P1h8 are characterized by meandering river. Within these fluvial deposits, the procedure consists of analyzing high-resolution sequence stratigraphy and sedimentary dynamics defined from calibrated logging curve signatures and depositional studies. According to modern and ancient fluvial deposits, we have developed a process-based sedimentary conceptual model for interpreting and predicting the distribution and geometries of sand bodies in braided and meandering deposits. The main sand body of the braided river system was bars and channel fill deposits. The braided river sand bodies are distributed over multiple vertical superimpositions and overlapping horizontal connections. The meandering river sand bodies are mainly point-bar deposits, which are bead-shaped and exhibit scattered development in the vertical direction. This comparison indicates that there were significant differences between braided and meandering deposystems. The sand bodies in the Lower P1h8 were multidirectionally connected and primarily distributed in a stacked pattern. In contrast, the sand bodies in the Upper P1h8 were distributed in an isolated manner, and fine grains (mud and silt) were deposited between the sand bodies with poor connectivity. We interpreted the fluvial deposits that control the distributions of the sand body of the He8 Member in the eastern Sulige gas field and constructed a corresponding prediction model of a braided-meandering reservoir. This model will promote understanding of the extent of fluvial deposits and sand-body distribution of P1h8, thus elucidating hydrocarbon-bearing sand units of the Ordos Basin for future exploration.