Abstract:Machine learning is now becoming a widely used mechanism and applying it in certain sensitive fields like medical and financial data has only made things easier. Accurate Diagnosis of cancer is essential in treating it properly. Medical tests regarding cancer in recent times are quite expensive and not available in many parts of the world. CryptoNets, on the other hand, is an exhibit of the use of Neural-Networks over data encrypted with Homomorphic Encryption. This project demonstrates the use of Homomorphic … Show more
“…Homomorphic encryption on images is particularly challenging given difficulty encoding visual images. Khilji et al [35] successfully demonstrated the ability to train a deep learning classification model using homomorphic encryption. The model which attempted to diagnose the present of Acute Lymphoblastic Leukemia from pathologic images had an accuracy of 77.9%.…”
Objectives: Despite growing enthusiasm surrounding the utility of clinical informatics to improve cancer outcomes, data availability remains a persistent bottleneck to progress. Difficulty combining data with protected health information often limits our ability to aggregate larger more representative datasets for analysis. With the rise of machine learning techniques that require increasing amounts of clinical data, these barriers have magnified. Here, we review recent efforts within clinical informatics to address issues related to safely sharing cancer data.
Methods: We carried out a narrative review of clinical informatics studies related to sharing protected health data within cancer studies published from 2018-2022, with a focus on domains such as decentralized analytics, homomorphic encryption, and common data models.
Results: Clinical informatics studies that investigated cancer data sharing were identified. A particular focus of the search yielded studies on decentralized analytics, homomorphic encryption, and common data models. Decentralized analytics has been prototyped across genomic, imaging, and clinical data with the most advances in diagnostic image analysis. Homomorphic encryption was most often employed on genomic data and less on imaging and clinical data. Common data models primarily involve clinical data from the electronic health record. Although all methods have robust research, there are limited studies showing wide scale implementation.
Conclusions: Decentralized analytics, homomorphic encryption, and common data models represent promising solutions to improve cancer data sharing. Promising results thus far have been limited to smaller settings. Future studies should be focused on evaluating the scalability and efficacy of these methods across clinical settings of varying resources and expertise.
“…Homomorphic encryption on images is particularly challenging given difficulty encoding visual images. Khilji et al [35] successfully demonstrated the ability to train a deep learning classification model using homomorphic encryption. The model which attempted to diagnose the present of Acute Lymphoblastic Leukemia from pathologic images had an accuracy of 77.9%.…”
Objectives: Despite growing enthusiasm surrounding the utility of clinical informatics to improve cancer outcomes, data availability remains a persistent bottleneck to progress. Difficulty combining data with protected health information often limits our ability to aggregate larger more representative datasets for analysis. With the rise of machine learning techniques that require increasing amounts of clinical data, these barriers have magnified. Here, we review recent efforts within clinical informatics to address issues related to safely sharing cancer data.
Methods: We carried out a narrative review of clinical informatics studies related to sharing protected health data within cancer studies published from 2018-2022, with a focus on domains such as decentralized analytics, homomorphic encryption, and common data models.
Results: Clinical informatics studies that investigated cancer data sharing were identified. A particular focus of the search yielded studies on decentralized analytics, homomorphic encryption, and common data models. Decentralized analytics has been prototyped across genomic, imaging, and clinical data with the most advances in diagnostic image analysis. Homomorphic encryption was most often employed on genomic data and less on imaging and clinical data. Common data models primarily involve clinical data from the electronic health record. Although all methods have robust research, there are limited studies showing wide scale implementation.
Conclusions: Decentralized analytics, homomorphic encryption, and common data models represent promising solutions to improve cancer data sharing. Promising results thus far have been limited to smaller settings. Future studies should be focused on evaluating the scalability and efficacy of these methods across clinical settings of varying resources and expertise.
Background
Machine learning (ML) and deep learning (DL) methods have recently garnered a great deal of attention in the field of cancer research by making a noticeable contribution to the growth of predictive medicine and modern oncological practices. Considerable focus has been particularly directed toward hematologic malignancies because of the complexity in detecting early symptoms. Many patients with blood cancer do not get properly diagnosed until their cancer has reached an advanced stage with limited treatment prospects. Hence, the state-of-the-art revolves around the latest artificial intelligence (AI) applications in hematology management.
Objective
This comprehensive review provides an in-depth analysis of the current AI practices in the field of hematology. Our objective is to explore the ML and DL applications in blood cancer research, with a special focus on the type of hematologic malignancies and the patient’s cancer stage to determine future research directions in blood cancer.
Methods
We searched a set of recognized databases (Scopus, Springer, and Web of Science) using a selected number of keywords. We included studies written in English and published between 2015 and 2021. For each study, we identified the ML and DL techniques used and highlighted the performance of each model.
Results
Using the aforementioned inclusion criteria, the search resulted in 567 papers, of which 144 were selected for review.
Conclusions
The current literature suggests that the application of AI in the field of hematology has generated impressive results in the screening, diagnosis, and treatment stages. Nevertheless, optimizing the patient’s pathway to treatment requires a prior prediction of the malignancy based on the patient’s symptoms or blood records, which is an area that has still not been properly investigated.
Introduction. The early detection and diagnosis of leukemia, i.e., the precise differentiation of malignant leukocytes with minimum costs in the early stages of the disease, is a major problem in the domain of disease diagnosis. Despite the high prevalence of leukemia, there is a shortage of flow cytometry equipment, and the methods available at laboratory diagnostic centers are time-consuming. Motivated by the capabilities of machine learning (machine learning (ML)) in disease diagnosis, the present systematic review was conducted to review the studies aiming to discover and classify leukemia by using machine learning. Methods. A systematic search in four databases (PubMed, Scopus, Web of Science, and ScienceDirect) and Google Scholar was performed via a search strategy using Machine Learning (ML), leukemia, peripheral blood smear (PBS) image, detection, diagnosis, and classification as the keywords. Initially, 116 articles were retrieved. After applying the inclusion and exclusion criteria, 16 articles remained as the population of the study. Results. This review study presents a comprehensive and systematic view of the status of all published ML-based leukemia detection and classification models that process PBS images. The average accuracy of the ML methods applied in PBS image analysis to detect leukemia was >97%, indicating that the use of ML could lead to extraordinary outcomes in leukemia detection from PBS images. Among all ML techniques, deep learning (DL) achieved higher precision and sensitivity in detecting different cases of leukemia, compared to its precedents. ML has many applications in analyzing different types of leukemia images, but the use of ML algorithms to detect acute lymphoblastic leukemia (ALL) has attracted the greatest attention in the fields of hematology and artificial intelligence. Conclusion. Using the ML method to process leukemia smear images can improve accuracy, reduce diagnosis time, and provide faster, cheaper, and safer diagnostic services. In addition to the current diagnostic methods, clinical and laboratory experts can also adopt ML methods in laboratory applications and tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.