2023
DOI: 10.1021/acs.iecr.3c02132
|View full text |Cite
|
Sign up to set email alerts
|

Application of Lipase B from Candida antarctica in the Pharmaceutical Industry

Hong hai Wang,
Qiang Zhang,
Xiong Yu
et al.

Abstract: The use of biocatalysts in pharmaceutical production is an important approach for the pharmaceutical industry to achieve green manufacturing. Compared to other lipases, Candida antarctica lipase B (CALB) possesses numerous excellent characteristics due to its unique structure. It exhibits relatively strong catalytic activity toward both water-insoluble and water-soluble substances. It shows high selectivity in hydrolysis and organic synthesis reactions. These properties are crucial for drug synthesis. However,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2025
2025

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(1 citation statement)
references
References 130 publications
0
1
0
Order By: Relevance
“…This is due to their robustness, lack of cofactors and wide specificity, and ability to accept a wide variety of substrates. Their high stability has enabled the use of lipases in a wide variety of reaction media (e.g., aqueous [7,8], organic solvents [2,9], supercritical fluids [10,11], ionic liquids [12][13][14][15][16], eutectic solvents [17,18], solvent-free systems [19]), and their variety of substrates permits to use them in a diversity of industrial areas [20] (wastewater treatment [21], food [22][23][24], energy [25,26], cosmetic [27], pharmaceutical [28][29][30], fine chemistry [31][32][33][34][35][36]). They can be used in hydrolysis [7,8], acidolysis [37,38], interesterifications [39,40], esterifications [19,41,42], transesterifications [25,43], amidations [44][45][46], etc.…”
Section: Introductionmentioning
confidence: 99%
“…This is due to their robustness, lack of cofactors and wide specificity, and ability to accept a wide variety of substrates. Their high stability has enabled the use of lipases in a wide variety of reaction media (e.g., aqueous [7,8], organic solvents [2,9], supercritical fluids [10,11], ionic liquids [12][13][14][15][16], eutectic solvents [17,18], solvent-free systems [19]), and their variety of substrates permits to use them in a diversity of industrial areas [20] (wastewater treatment [21], food [22][23][24], energy [25,26], cosmetic [27], pharmaceutical [28][29][30], fine chemistry [31][32][33][34][35][36]). They can be used in hydrolysis [7,8], acidolysis [37,38], interesterifications [39,40], esterifications [19,41,42], transesterifications [25,43], amidations [44][45][46], etc.…”
Section: Introductionmentioning
confidence: 99%