The purpose of this study is to evaluate the temperature distribution, strength development, porosity, scanning electron microscopy observation, shrinkage, and surface properties of concrete in order to apply microwave heat curing to the precast method and to analyze the CO2 emissions and economic feasibility of microwave heat curing. The heating of a steel form by microwave heating enabled concrete to be efficiently cured at a temperature within a range of ±5 °C. After the curing, demolding strength could be cleared through the densification of the concrete by decreasing the porosity of the concrete. Microwave heat curing exhibited excellent performance compared to conventional steam curing in terms of efficient temperature control, occurrence of cracks due to shrinkage, surface condition of concrete after curing, economic efficiency, and CO2 emissions. However, verification and supplementation based on actual data are necessary so that environments applicable to the various sizes and shapes of forms can be prepared.