Application of machine learning algorithms in classifying postoperative success in metabolic bariatric surgery: Acomprehensive study
José Alberto Benítez-Andrades,
Camino Prada-García,
Rubén García-Fernández
et al.
Abstract:Objectives Metabolic bariatric surgery is a critical intervention for patients living with obesity and related health issues. Accurate classification and prediction of patient outcomes are vital for optimizing treatment strategies. This study presents a novel machine learning approach to classify patients in the context of metabolic bariatric surgery, providing insights into the efficacy of different models and variable types. Methods Various machine learning models, including Gaussian Naive Bayes, Complement … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.