Because the number of air quality measurement stations governed by a public authority is limited, many methodologies have been developed in order to integrate low-cost sensors and to improve the spatial density of air quality measurements. However, at the large-scale level, the integration of a huge number of sensors brings many challenges. The volume, velocity and processing requirements regarding the management of the sensor life cycle and the operation of system services overcome the capabilities of the centralized cloud model. In this paper, we present the methodology and the architectural framework for building large-scale sensing infrastructure for air quality monitoring applicable in urban scenarios. The proposed tiered architectural solution based on the adopted fog computing model is capable of handling the processing requirements of a large-scale application, while at the same time sustaining real-time performance. Furthermore, the proposed methodology introduces the collection of methods for the management of edge-tier node operation through different phases of the node life cycle, including the methods for node commission, provision, fault detection and recovery. The related sensor-side processing is encapsulated in the form of microservices that reside on the different tiers of system architecture. The operation of system microservices and their collaboration was verified through the presented experimental case study.