2023
DOI: 10.1111/ffe.14128
|View full text |Cite
|
Sign up to set email alerts
|

Application of machine learning models for estimating the material parameters for multiaxial fatigue strength calculation

Marko Nagode,
Jan Papuga,
Simon Oman

Abstract: This paper deals with a practical task of estimating missing material fatigue strengths required for the evaluation of multiaxial fatigue strength criteria, knowing other static or fatigue material parameters. Instead of searching for various analytical equations describing the dependencies between different material parameters, several machine learning models implemented in the caret R package are used here. The dataset used to train and test these models is based on the FatLim dataset with different material… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 50 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?