2022
DOI: 10.1016/j.envres.2022.113175
|View full text |Cite
|
Sign up to set email alerts
|

Application of machine learning to predict the inhibitory activity of organic chemicals on thyroid stimulating hormone receptor

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(1 citation statement)
references
References 57 publications
0
1
0
Order By: Relevance
“…In addition, for the regression problem, the evaluation indexes of the model include: coefficient of determination (R 2 ) (Uddin et al 2022;Suvarna et al 2022), mean absolute error (MAE) (Zhang et al 2021a;Lamoureux et al 2021;Chang and Medford 2021), mean square error (MSE), root mean square error (RMSE) (Wei et al 2022;Kim et al 2021) and mean absolute percentage error (MAPE) (Mir et al 2022;Ke et al 2021b;Bhagat et al 2021). For classification problems, the evaluation indicators of the model are accuracy (Liu et al 2022d), error rate, recall rate (Somarowthu et al 2011), balanced F score (F1 score) (Avakyan et al 2022;Findlay et al 2018), receiver operating characteristic (ROC) curve (Xu et al 2022;Razavi-Termeh et al 2021) and the area under ROC curve (AUROC or AUC) (Wan et al 2022;Ding et al 2022;Cashman et al 2017).…”
Section: Evaluation Metrics For Machine Learningmentioning
confidence: 99%
“…In addition, for the regression problem, the evaluation indexes of the model include: coefficient of determination (R 2 ) (Uddin et al 2022;Suvarna et al 2022), mean absolute error (MAE) (Zhang et al 2021a;Lamoureux et al 2021;Chang and Medford 2021), mean square error (MSE), root mean square error (RMSE) (Wei et al 2022;Kim et al 2021) and mean absolute percentage error (MAPE) (Mir et al 2022;Ke et al 2021b;Bhagat et al 2021). For classification problems, the evaluation indicators of the model are accuracy (Liu et al 2022d), error rate, recall rate (Somarowthu et al 2011), balanced F score (F1 score) (Avakyan et al 2022;Findlay et al 2018), receiver operating characteristic (ROC) curve (Xu et al 2022;Razavi-Termeh et al 2021) and the area under ROC curve (AUROC or AUC) (Wan et al 2022;Ding et al 2022;Cashman et al 2017).…”
Section: Evaluation Metrics For Machine Learningmentioning
confidence: 99%