Ferroelectric Random Access Memory (FRAM) by Texas Instruments (TI) is a non-volatile memory which allows lower power and faster data throughput compared to other nonvolatile solutions. These features have accelerated the interest in this technology as the future of embedded unified memory, in particular in data logging, remote sensing and Wireless Sensor Network (WSN). The application of Model Predictive Control (MPC) in WSN has gained lot of attention in the last years and it requires solving convex optimization problems in real-time. In this paper several convex optimization algorithms have been implemented and compared on a FRAM-based MSP-EXP430FR5739 node by TI, to evaluate its suitability in extending the potentialities of onboard volatile Static Random Access Memory (SRAM) for embedded optimization-based control.