2008
DOI: 10.1016/j.enconman.2007.08.012
|View full text |Cite
|
Sign up to set email alerts
|

Application of multiple tabu search algorithm to solve dynamic economic dispatch considering generator constraints

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
95
0
2

Year Published

2008
2008
2019
2019

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 192 publications
(97 citation statements)
references
References 14 publications
0
95
0
2
Order By: Relevance
“…Untuk mengatasi masalah ini, beberapa metode heuristik telah terbukti keberhasilannya dalam menangani permasalahan ini yaitu constriction factor based particle swarm optimization (CFBPSO) dan kombinasi inertia weight contriction factor (IWCFPSO) [3], hybrid simulated annealing particle swarm optimization (SA-PSO) [4], multiple tabe search (MTS) [5], chaotic ant swarm optimization (CASO) [6], imperialist competitive algorithm (ICA) [7][8], extention particle swarm optimization (E-PSO) [9], differential evolution ant colony optimization (DE-ACO) [10], genetic algorithm (GA) [4]. Keunggulan dari metode GA terletak pada proses seleksi dan evaluasi yaitu crossover.…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Untuk mengatasi masalah ini, beberapa metode heuristik telah terbukti keberhasilannya dalam menangani permasalahan ini yaitu constriction factor based particle swarm optimization (CFBPSO) dan kombinasi inertia weight contriction factor (IWCFPSO) [3], hybrid simulated annealing particle swarm optimization (SA-PSO) [4], multiple tabe search (MTS) [5], chaotic ant swarm optimization (CASO) [6], imperialist competitive algorithm (ICA) [7][8], extention particle swarm optimization (E-PSO) [9], differential evolution ant colony optimization (DE-ACO) [10], genetic algorithm (GA) [4]. Keunggulan dari metode GA terletak pada proses seleksi dan evaluasi yaitu crossover.…”
Section: Pendahuluanunclassified
“…Algoritma ini memperkenalkan mekanisme tambahan seperti inisialisasi, pencarian adaptif, crossover, dan proses restart. Metode ini diuji pada kasus 6 pembangkitan sistem tenaga IEEE 26 bus dan menunjukkan hasil lebih baik dibandingkan metode simulated annealing (SA), GA, tabu search (TS), dan PSO [5].…”
Section: Studi Pustakaunclassified
“…This technique is a novel socio-politically motivated global search scheme that is currently induced in order to deal with various optimization tasks. In [29], this algorithm is utilized to detect the optimized weights of the ANN. ICA has major performances to be mentioned, such as rapid convergence and superior global minimum attainment.…”
Section: Imperialist Competitive Algorithm Methodsmentioning
confidence: 99%
“…In this case, the load demand expected to be determined was PD=1263 MW. The B matrix of the transmission loss coefficient is given by: Table 7 shows the performance comparison among the proposed algorithms, a particle swarm optimization (PSO) approach [10], a novel string based GA [7], standard ge-netic algorithm (GA) method [10], multiple tabu search algorithm (MTS) [8], and the simulated annealing (SA) method [9]. The simulation results of the proposed approach outperformed recent optimization methods presented in the literature in terms of solution quality and time convergence.…”
Section: Test Systemmentioning
confidence: 99%
“…To accelerate the search process authors in [8] proposed a multiple tabu search algorithm (MTS) to solve the dynamic economic dispatch (ED) problem with generator constraints, simulation results prove that this approach is able to reduce the computational time compared to the conventional approaches. Authors in [9] present an algorithm based simulated annealing to solve the optimal power flow.…”
Section: Introductionmentioning
confidence: 99%