Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Global environmental concerns about non‐degradable packaging materials are increasing. Carboxymethyl chitosan (CMCS), a polysaccharide widely used in the food industry, has gained attention in the field of food packaging. Due to its biodegradability, film‐forming ability, and biocompatibility, CMCS has emerged as a sustainable option for degradable and functional food packaging materials, offering solutions to plastic pollution and food waste issues. This review explores CMCS as a food packaging and delivery material, detailing its synthesis methods, optimal preparation conditions, functional properties post‐carboxymethylation, and applications in the food industry, alongside safety assessments. It summarizes the physicochemical interactions of CMCS‐based composites and their impact on relevant properties, highlighting CMCS's potential as a green strategy for smart and active food packaging materials. Additionally, it presents the latest advancements in CMCS applications in the food industry over the past decade. CMCS exhibits good biocompatibility and antibacterial properties, and its functionality in food packaging films and delivery materials is enhanced through functional modification and polymerization. CMCS is widely used as a matrix for food preservation films or coatings and as a carrier for active ingredients, thereby improving the encapsulation efficiency and storage stability of functional food components. This review comprehensively outlines the applications of CMCS in the food industry, filling gaps in the existing literature, and laying a theoretical foundation for the development of CMCS technology. It provides a reference for further research, emphasizing the need to further investigate its molecular structure and chemical properties to optimize functionality and safety, thereby fully tapping into the potential of CMCS in the food industry.
Global environmental concerns about non‐degradable packaging materials are increasing. Carboxymethyl chitosan (CMCS), a polysaccharide widely used in the food industry, has gained attention in the field of food packaging. Due to its biodegradability, film‐forming ability, and biocompatibility, CMCS has emerged as a sustainable option for degradable and functional food packaging materials, offering solutions to plastic pollution and food waste issues. This review explores CMCS as a food packaging and delivery material, detailing its synthesis methods, optimal preparation conditions, functional properties post‐carboxymethylation, and applications in the food industry, alongside safety assessments. It summarizes the physicochemical interactions of CMCS‐based composites and their impact on relevant properties, highlighting CMCS's potential as a green strategy for smart and active food packaging materials. Additionally, it presents the latest advancements in CMCS applications in the food industry over the past decade. CMCS exhibits good biocompatibility and antibacterial properties, and its functionality in food packaging films and delivery materials is enhanced through functional modification and polymerization. CMCS is widely used as a matrix for food preservation films or coatings and as a carrier for active ingredients, thereby improving the encapsulation efficiency and storage stability of functional food components. This review comprehensively outlines the applications of CMCS in the food industry, filling gaps in the existing literature, and laying a theoretical foundation for the development of CMCS technology. It provides a reference for further research, emphasizing the need to further investigate its molecular structure and chemical properties to optimize functionality and safety, thereby fully tapping into the potential of CMCS in the food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.