Background
The Living Evidence Map Project at the Norwegian Institute of Public Health (NIPH) gives an updated overview of research results and publications. As part of NIPH’s mandate to inform evidence-based infection prevention, control and treatment, a large group of experts are continously monitoring, assessing, coding and summarising new COVID-19 publications. Screening tools, coding practice and workflow are incrementally improved, but remain largely manual.
Results
This paper describes how deep learning methods have been employed to learn classification and coding from the steadily growing NIPH COVID-19 dashboard data, so as to aid manual classification, screening and preprocessing of the rapidly growing influx of new papers on the subject. Our main objective is to make manual screening scalable through semi-automation, while ensuring high-quality Evidence Map content.
Conclusions
We report early results on classifying publication topic and type from titles and abstracts, showing that even simple neural network architectures and text representations can yield acceptable performance.