An artificial neural network (ANN) was developed to predict skin, a formation damage parameter in oil and gas drilling, well completion and production operations. Four performance metrics: goodness of fit (R2), mean square error (MSE), root mean square error (RMSE), average absolute percentage relative error (AAPRE), was used to check the performance of the developed model. The results obtained indicate that the model had an overall MSE of 355.343, RMSE of 18.850, AAPRE of 4.090 and an R2 of 0.9978. All the predictions agreed with the measured result. The generalization capacity of the developed ANN model was assessed using 500 randomly generated datasets that were not part of the model training process. The results obtained indicate that the developed model predicted 97% of these new datasets with an MSE of 375.021, RMSE of 19.370, AAPRE of 6.090 and R2 of 0.9731, while Standing (1970) equation resulted in R2of −0.807, MSE of 9.34×1016, AAPRE of 3.10×106 and RMSE of 4.10×105. The relative importance analysis of the model input parameters showed that the flow rates (q), permeability (k), porosity (φ) and pressure drop (Δp) had a significant impact on the skin (S) values estimated from the downhole. Thus, the developed model if embedded in a downhole (sensing) tool that capture these basic or required reservoir parameters: pressure, flowrate, permeability, viscosity, and thickness, would eliminate the diagnostic approach of estimating skin factor in the petroleum industry.