Chromatography is a method for the isolation of a mixture into separate sections. It is usually based on the principle of partition of solute between two phases. It usually consists of a mobile phase and a stationary phase. The advancement of the mobile process in the planar stationary stage is evoked by different external or internal forces. Capillarity and gravity are the intrinsic force whereas external forces are electric field, pump, and centrifugal forces. Thin layer chromatography and high-pressure thin layer chromatography are based on the adsorption theory. Forced flow thin layer chromatography is also based on the adsorption principle. FFTLC is an authoritative method of separation that uses a solvent pump to extract the sample mixture into a pressurized ultra-micro cavity containing an adsorbent analytical or preparative planer bed. FFTLC needs no or slight sample preparation as in TLC. One relation between FFTLC and high-pressure liquid chromatography is that as in HPLC, the maximum layer length is used for analytical and preparatory separation. FFTLC is a process in which continuous production and continual evaporation of the mobile phase from the end of the chromatography plate produces forced-flow. Here, we focus on FFTLC, an advanced and more sophisticated chromatographic technique.