In this study, a batch sorption study approach was combined with an instrumental analytical approach of atomic absorption spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) for the sorption of copper and zinc ions from aqueous solution on zeolites. Both copper and zinc are biogenic elements; nevertheless, many industrial processes produce an excessive amount, which is why their efficient removal from water must be studied. Two types of zeolites, Zeolite Micro 20 (Z-M20) and Zeolite Micro 50 (Z-M50), were used. The results showed that the maximum sorption capacities for removal of Cu and Zn were 1.06 for CuSO4, 42.35 for Cu(NO3)2, 1.15 for ZnSO4 and 2.29 for Zn(NO3)2 adsorption onto Z-M20 and 0.45 for CuSO4,1.67 for Cu(NO3)2, 0.39 for ZnSO4 and 1.51 for Zn(NO3)2 adsorption onto Z-M50. The maximum sorption capacities are higher for sulfates and the sorbent with smaller particle size. The sorption capacities of Cu and Zn for corresponding anion and particle size differ only up to 5–15%. Using XRD and XPS analyses before and after the sorption process, it was found that the content of both Cu and Zn in the surface layer and the bulk are the same for sorption onto sorbent with smaller particle size, but are higher in the surface layer than in the bulk for sorption onto sorbent with larger particle size. One of the main findings of this study is that a zeolite with smaller particles takes Cu and Zn by the whole particle, while with bigger particles, Cu and Zn concentrate in the surface of the particle. The results of the study may be used as an indicator for sorption efficiency of the studied zeolites for their application in the treatment of copper and zinc contaminated effluents.