In this paper, a novel method of real-time fire detection based on HMMs is presented. First, we present an analysis of fire characteristics that provides evidence supporting the use of HMMs to detect fire; second, we propose an algorithm for detecting candidate fire pixels that entails the detection of moving pixels, fire-color inspection, and pixels clustering. The main contribution of this paper is the establishment and application of a hidden Markov fire model by combining the state transition between fire and non-fire with fire motion information to reduce data redundancy. The final decision is based on this model which includes training and application; the training provides parameters for the HMM application. The experimental results show that the method provides both a high detection rate and a low false alarm rate. Furthermore, real-time detection has been effectively realized via the learned parameters of the HMM, since the most time-consuming components such as HMM training are performed off-line.