The lowest unoccupied molecular orbital (LUMO) plays a crucial role in quantum chemistry, but current quantum chemistry calculations fail to provide useful virtual orbitals, making it challenging to explore various processes such as photochemical reactions, electron attachment, reduction, or excitation processes. The LUMO obtained from the self-consistent field (SCF) solution can not be relied upon and needs to be identified as they are often present among the continuum states having almost similar energies. The nuclear charge stabilization method has been proven useful in identifying LUMO. Herein, we have proposed the application of parametric equations of motion (PEM) in conjunction with nuclear charge stabilization method to identify the LUMO obtained from the SCF solution exhibiting stability with different basis sets including diffuse functions.