Application of PCA-LSTM algorithm for financial market stock return prediction and optimization model
Yanxiang Mi,
Donghai Xu,
Tielin Gao
Abstract:Accurately predicting stock returns can help reduce market risk. This paper briefly introduced the long short-term memory (LSTM) algorithm model for predicting stock returns and combined it with principal component analysis (PCA) to improve the prediction accuracy. Simulation experiments were conducted on 80 stocks, and the PCA-LSTM model was compared with back-propagation neural network (BPNN) and LSTM models. The results showed that the PCA analysis method effectively identified the principal components of v… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.