Application of Principal Component Analysis to advancing digital phenotyping of plant disease in the context of limited memory for training data storage
Abstract:Despite its widespread employment as a highly efficient dimensionality reduction technique, limited research has been carried out on the advantage of Principal Component Analysis (PCA)–based compression/reconstruction of image data to machine learning-based image classification performance and storage space optimization. To address this limitation, we designed a study in which we compared the performances of two Convolutional Neural Network-Random Forest Algorithm (CNN-RF) guava leaf image classification model… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.