Gallic acid (GA) is a naturally occurring phenolic acid that can be found in the leaves, roots, flowers, or stems of a wide variety of plant species. It has a broad range of uses in the food and pharmaceutical industries. The objective of this research is to investigate the GA reactive extraction process employing dichloromethane and n-heptane as solvents, 1-octanol as a phase-modifier, and Amberlite LA-2 as an amine extractant dissolved in the organic phase. The separation yield and distribution coefficient data were discussed, along with the analysis of the extraction conditions and the extraction mechanism. Dichloromethane employed as the solvent, 80 g/L Amberlite LA2 used as the extractant, and 10% phase modifier were determined to be the ideal conditions for the reactive extraction onto a biphasic organic-aqueous system. Statistical regression and artificial neural networks (ANNs) established with the differential evolution (DE) algorithm were also used to model and optimize the process.