“…Another control method for perfect tracking of repetitive trajectory is called Repetitive Control (RC). Recently, RC has been used for leg exoskeleton control [56], 1-DOF Lagrangian system [57], industrial wide-format printing [58], contouring control of micro-stereolithography [59], magnetically suspended rotor system [60], [61], [62], control of linear actuator [63], functional electrical stimulation [64], [65], grid-connected inverters [66], [67], [68], [69], [70], nanometer-order contouring [71], dynamical galvanometerbased raster scanning [72], atomic force microscopy (AFM) scanner [73], mechanical ventilation [74], permanent magnet synchronous motor (PMSM) [75]- [77], servo motor [78], plug-in electric vehicle (PEV) charger [79], piezoelectric nano positioning stage [80], hydraulic press system [81], robotic manipulator [82], [83], and electric spring [84]. The RC is based on the idea of internal model principle by Francis and Wonham [85] stated that by incorporating model of reference/disturbance then perfect reference tracking or disturbance rejection can be achieved.…”