Osteoarthritis (OA) is a degenerative disease, and there is currently no effective medicine to cure it. Early prevention and treatment can effectively reduce the pain of OA patients and save costs. Therefore, it is necessary to diagnose OA at an early stage. There are various diagnostic methods for OA, but the methods applied to early diagnosis are limited. Ordinary optical diagnosis is confined to the surface, while laboratory tests, such as rheumatoid factor inspection and physical arthritis checks, are too trivial or time-consuming. Evidently, there is an urgent need to develop a rapid nondestructive detection method for the early diagnosis of OA. Vibrational spectroscopy is a rapid and nondestructive technique that has attracted much attention. In this review, near-infrared (NIR), infrared, (IR) and Raman spectroscopy were introduced to show their potential in early OA diagnosis. The basic principles were discussed first, and then the research progress to date was discussed, as well as its limitations and the direction of development. Finally, all methods were compared, and vibrational spectroscopy was demonstrated that it could be used as a promising tool for early OA diagnosis. This review provides theoretical support for the application and development of vibrational spectroscopy technology in OA diagnosis, providing a new strategy for the nondestructive and rapid diagnosis of arthritis and promoting the development and clinical application of a component-based molecular spectrum detection technology.