This paper aims to identify and discuss the chances, solutions, and possible drawbacks related to the establishment of safe geotourism sites in subsidence-affected areas, exemplarily applied to the Ghor Al-Haditha sinkhole site at the southeastern shore of the Dead Sea. Such safe areas shall be established in the territory of the proposed future UNESCO Global Geopark (UGGp) in Jordan. The highlights of the geopark and the basis of its creation are the subsidence features and stream channels found along the SE shoreline of the Dead Sea, which form both a natural hazard and geological heritage of high international significance and have attracted many researchers so far. This recent and ongoing formation is related to the sharp regression of the lake, the specific geomechanical conditions, and the hydrogeologic and climatic background of the surroundings. Nearby communities have suffered in economic terms from these natural phenomena, including flash floods and droughts in this semi-arid to arid region. We here present a concept on how to integrate geoscientific research for hazard monitoring and early warning to maintain safety for inhabitants and visitors on the one hand and reach sustainable economic development through the establishment of geotourism sites on the other hand. This highlight area of the proposed UGGp serves as a starting example for delineating safe zones for walkways and infrastructure. This involves two-way knowledge transfer between spatial planning and hydrogeophysical monitoring, a network of community-supported geophysical surveillance, and regular maintenance and adaptation. The cross-cutting benefits for the territory involve the delineation of safe areas for agriculture and geotourism, the increase of sustainable tourism in the region with a shift towards alternative ways of income, more investment in infrastructure, a growth of international visibility of the region, enhanced environmental education with focus on responsible water usage, and involvement in international research and education projects.