Steel cables used to raise sluices require a layer of corrosion-resistant grease, which must be periodically replaced. It is time-consuming and laborious, and conventional manual cleaning, mechanical cleaning, and chemical cleaning methods have many drawbacks. In this paper, a nanosecond pulsed fiber laser is used to clean hardened surface grease from such cables. An experimental system was designed to study the effects of parameters such as the laser power, scanning speed, cleaning frequency, and defocusing amount. Macroscopic and microstructural observations were conducted on the surfaces of steel cables before and after cleaning using cameras, optical microscopy, scanning electron microscopy, and energy dispersive spectrometry. With the optimal parameters, laser cleaning can effectively remove hardened grease from steel cable surfaces without damaging the galvanized layer and the steel wire matrix. Ablation, gasification, and evaporation are the main mechanisms by which grease and dirt are removed. This study lays a foundation for optimizing the laser cleaning of steel sluice cables at work sites.