Chitosan (90% deacetylated) coated magnetic adsorbent prepared by coprecipitation method to remove Cr(VI) from its aqueous solution. The experimental studies depicts that the predominant option for removal of Chromium by adsorption from its aqueous phase using Magnetic‐Chitosan (MC). The subsequent physical, chemical, and magnetic properties of MC were characterized by X‐ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectrometer, vibrating sample magnetometer. The influence of batch process parameters such as contact time, initial concentration, pH, and coexisting anions were investigated. The Box‐Behnken experimental design in response surface methodology was performed to design the experiment optimal operating conditions. The maximum percentage reduction of Cr(VI) is 96.3 that was obtained by magnetic chitosan with the optimal operating conditions of 149.53 mg/L at pH of 5.32 at the contact time of 80 min and at the temperature of 303 K. The average diameter of the magnetic chitosan was calculated from X‐ray diffractometer analysis as 24.5 nm. The equilibrium adsorption isotherm models such as Langmuir and Freundlich and the adsorption kinetics such as pseudo first order, pseudo second order and intra‐particle diffusion kinetic model were analyzed. The experimental data's suited for the best fit with the Langmuir isotherm model and pseudo first order kinetic model. It also revealed that Cr(VI) adsorption on MC is intrinsically exothermic and spontaneous. The magnetic chitosan was also used to investigate for the removal of Cr(VI) from the real water sources such as surface, underground, and tannery wastewater. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45878.