This study employs probabilistic analysis to evaluate the life cycle embodied environmental cost of Korean apartment buildings, with a focus on six major construction materials. To this end, the bill of materials was analyzed for 443 Korean apartment buildings according to the type and plan form, and probability density functions (PDFs) were established for the input quantities of the six materials under consideration. Life cycle scenarios were then examined for each material, and their respective life cycle embodied environmental cost factors were established, using a monetary valuation-based damage cost life cycle analysis model. The estimated environmental costs were evaluated by apartment structural type and plan form, based on probability distributions using the Monte Carlo simulation (MCS). Building life cycle embodied environmental cost was estimated between 16.87 USD/m2 and 23.03 USD/m2 (90% confidence interval). Among the structure types analyzed, the highest costs were associated with the wall structure, followed by rigid frame and flat plate structures; at the plan form level, costs followed the sequence plate-type > mixed-type > tower type for a given type of structure.