The main goal of the work is to create an automatic method of locating weak zones within flood embankments structure based on ground penetrating radar (GPR) measurements. The presented research shows the possibilities of using advanced methods of GPR signal processing and its analysis with the help of signal attributes for detecting zones threatening the stability of the structure of flood embankments. Obtained results may help in quick detection of potential weak zones of the embankments and consequently give means to ameliorate them, which may prevent damage to the embankments during rise in the level of river water. The presented analyses were carried out on GPR data obtained for the flood banks of the Rudawa River (Kraków, Poland) in the area of their visible degradation. The use of signal attributes, such as Energy, instantaneous frequency, similarity, curvature gradient, dominant frequency, allowed initial indication of anomalous zones threatening the stability of embankment. Advanced processing supported by the use of advanced filters such as GLCM, Grubbs filter threshold and Convolve Prewitt helped in the analysis of the structure of the embankments. Artificial neural networks (ANNs) in the supervised and unsupervised variants were used to perform the automatic classification of weakened zones within the embankments. The results demonstrated the usefulness of GPR geophysical method through integration of ANN in the analysis of the data.