In this Minireview, we describe the function of the bacterial reaction centre (RC) as the central photosynthetic energy-conversion unit by ultrafast spectroscopy combined with structural analysis, site-directed mutagenesis, pigment exchange and theoretical modelling. We show that primary energy conversion is a stepwise process in which an electron is transferred via neighbouring chromophores of the RC. A well-defined chromophore arrangement in a rigid protein matrix, combined with optimised energetics of the different electron carriers, allows a highly efficient charge-separation process. The individual molecular reactions at room temperature are well described by conventional electron-transfer theory.