Abstract-In this paper, frequency selective surfaces (FSSs) are analyzed and designed. The analytical procedure is based on method of moments (MoM). The generalized minimal residual recursive method combined with fast Fourier transform (GMRESR-FFT) is utilized to accelerate the solution of the matrix equation. Our numerical results show that the GMRESR-FFT method can converge at least 3 times faster than the generalized minimal residual fast Fourier transform method (GMRES-FFT). In this paper, the cross dipoles are first used to design the FSS filter with a passband at 300 GHz and a stopband at 450 GHz, and then the Jerusalem cross slots are utilized to avoid grating lobes and improve the bandwidth of FSS. Numerical results demonstrate the validity and efficiency of the presented method.