Quantitative evaluation of potential pharmacodynamic (PD) interactions is important in tuberculosis drug development in order to optimize Phase 2b drug selection and ultimately to define clinical combination regimens. In this work, we used simulations to (1) evaluate different analysis methods for detecting PD interactions between two hypothetical anti-tubercular drugs in in vitro time-kill experiments, and (2) provide design recommendations for evaluation of PD interactions. The model used for all simulations was the Multistate Tuberculosis Pharmacometric (MTP) model linked to the General Pharmacodynamic Interaction (GPDI) model. Simulated data were re-estimated using the MTP-GPDI model implemented in Bliss Independence or Loewe Additivity, or using a conventional model such as an Empirical Bliss Independence-based model or the Greco model based on Loewe Additivity. The GPDI model correctly characterized different PD interactions (antagonism, synergism, or asymmetric interaction), regardless of the underlying additivity criterion. The commonly used conventional models were not able to characterize asymmetric PD interactions, i.e., concentration-dependent synergism and antagonism. An optimized experimental design was developed that correctly identified interactions in ≥ 94% of the evaluated scenarios using the MTP-GPDI model approach. The MTP-GPDI model approach was proved to provide advantages to other conventional models for assessing PD interactions of anti-tubercular drugs and provides key information for selection of drug combinations for Phase 2b evaluation.