2006
DOI: 10.1016/j.mcm.2006.01.005
|View full text |Cite
|
Sign up to set email alerts
|

Application of two ant colony optimisation algorithms to water distribution system optimisation

Abstract: Voluntary posting on open web sites operated by author or author's institution for scholarly purposes.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
56
0
10

Year Published

2014
2014
2019
2019

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 151 publications
(67 citation statements)
references
References 20 publications
1
56
0
10
Order By: Relevance
“…Comparison of the results shows that ACOA2 has been able to outperform the other used methods with no extra computational time cost due to the unique feature of this method which is presented before. In addition, the near optimal solution of Maier et al (2003), Zecchin et al (2006) and Afshar (2007), 38.64 (M$), is obtained here using proposed ACOA2 with smaller computational time.…”
Section: Define the Problem Graph Start From Arbitrary Nodementioning
confidence: 78%
“…Comparison of the results shows that ACOA2 has been able to outperform the other used methods with no extra computational time cost due to the unique feature of this method which is presented before. In addition, the near optimal solution of Maier et al (2003), Zecchin et al (2006) and Afshar (2007), 38.64 (M$), is obtained here using proposed ACOA2 with smaller computational time.…”
Section: Define the Problem Graph Start From Arbitrary Nodementioning
confidence: 78%
“…There are many heuristic algorithms that are developed in recent years, such as Genetic Algorithms [17][18][19][20][21][22][23], Particle Swarm Optimization [24,25], Shuffled Complex Evolution (SCE) [26,27] and Ant Colony Optimization [28][29][30]. The SCE algorithm is one of the popular optimization algorithms in the river basin model calibration over the past 10 years given that more than 300 different publications referenced the original SCE publications [26,27,31].…”
Section: Introductionmentioning
confidence: 99%
“…Durante la última década, muchos investigadores han empezado a hacer uso de modernas técnicas evolutivas de optimización, dejando atrás otros métodos más tradicionales basados en la programación lineal y no lineal. Refiriéndonos exclusivamente al campo del agua, los algoritmos genéticos han sido los más utilizados (Savic y Walters, 1997;Wu y Simpson, 2001;Matías, 2003;Wu y Walski, 2005), aunque también han sido incorporadas otras técnicas, como las basadas en las colonias de hormigas (ACO, Ant Colony Optimization) (Zecchin et al, 2006;Montalvo et al, 2007a); Simulated Annealing, también denominada 'recocido simulado' (Cunha y Sousa, 1999); Shuffled Complex Evolution (Liong y Atiquzzama, 2004); Harmony Search o búsqueda de la armonía (Geem, 2006); Particle Swarm Optimization (PSO), basada en la inteligencia colectiva de los sistemas de partículas, Montalvo et al, 2008e). Entre las ventajas que han propiciado el uso creciente de los algoritmos evolutivos en el diseño óptimo de SDA, pueden citarse las siguientes:…”
Section: Comentariosunclassified
“…During the last decade, many researchers have started using modern evolutionary optimisation techniques, leaving aside more traditional methods based on linear and nonlinear programming. In the field of water systems, genetic algorithms have been the most used (Savic y Walters, 1997;Wu y Simpson, 2001;Matías, 2003;Wu y Walski, 2005), although other techniques based on ant colonies (ant colony optimisation or ACO) (Zecchin et al, 2006;Montalvo et al, 2007a) have been used; as well as simulated annealing (Cunha y Sousa, 1999); shuffled complex evolution (Liong y Atiquzzama, 2004); harmony search (Geem, 2006); and particle swarm optimisation (PSO) based on the collective intelligence of systems of particles Montalvo et al, 2008e). The advantages of the growing use of evolutionary algorithms in the optimal design of WDS include:…”
Section: Observationsmentioning
confidence: 99%
See 1 more Smart Citation