During past few decades, fuzzy decision is an important attention in the areas of science, engineering, economic system, business, etc. To solve day-to-day problem, researchers use fuzzy data in transportation problem for presenting the uncontrollable factors; and most of multi-objective transportation problems are solved using goal programming. However, when the problem contains interval-valued data, then the obtained solution was provided by goal programming may not satisfy by all decision-makers. In such condition, we consider a fixed-charge solid transportation problem in multi-objective environment where all the data are intuitionistic fuzzy numbers with membership and non-membership function. The intuitionistic fuzzy transportation problem transforms into interval-valued problem using $$(\alpha ,\beta )$$
(
α
,
β
)
-cut, and thereafter, it reduces into a deterministic problem using accuracy function. Also the optimum value of alternative corresponds to the optimum value of accuracy function. A numerical example is included to illustrate the usefulness of our proposed model. Finally, conclusions and future works with the study are described.