Application of Variational Graph Autoencoder in Traction Control of Energy-Saving Driving for High-Speed Train
Weigang Ma,
Jing Wang,
Chaohui Zhang
et al.
Abstract:In a high-speed rail system, the driver repeatedly adjusts the train’s speed and traction while driving, causing a high level of energy consumption. This also leads to the instability of the train’s operation, affecting passengers’ experiences and the operational efficiency of the system. To solve this problem, we propose a variational graph auto-encoder (VGAE) model using a neural network to learn the posterior distribution. This model can effectively capture the correlation between the components of a high-s… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.