2021
DOI: 10.3390/app112311229
|View full text |Cite
|
Sign up to set email alerts
|

Application of Various YOLO Models for Computer Vision-Based Real-Time Pothole Detection

Abstract: Pothole repair is one of the paramount tasks in road maintenance. Effective road surface monitoring is an ongoing challenge to the management agency. The current pothole detection, which is conducted image processing with a manual operation, is labour-intensive and time-consuming. Computer vision offers a mean to automate its visual inspection process using digital imaging, hence, identifying potholes from a series of images. The goal of this study is to apply different YOLO models for pothole detection. Three… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
12
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 69 publications
(26 citation statements)
references
References 30 publications
0
12
0
1
Order By: Relevance
“…The mAP@0.50 values of YOLOv5s, YOLOv4tiny, YOLOv4 used in Table 2 were from the results of Park et al [36]. In the same table, the mAP@0.50 value for the YOLOv3 model was reported by Lin et al [33].…”
Section: Results Comparisonmentioning
confidence: 80%
See 3 more Smart Citations
“…The mAP@0.50 values of YOLOv5s, YOLOv4tiny, YOLOv4 used in Table 2 were from the results of Park et al [36]. In the same table, the mAP@0.50 value for the YOLOv3 model was reported by Lin et al [33].…”
Section: Results Comparisonmentioning
confidence: 80%
“…The researchers also improved their pothole detection mechanism by using the YOLOv4 algorithm for various object detection applications. Various pothole detection mechanisms using YOLOv4 [32,35,36] have been proposed. Authors Sung-sick et al [36] used different modules from YOLOv4 and YOLOv5s for pothole detecting applications.…”
Section: Related Workmentioning
confidence: 99%
See 2 more Smart Citations
“…Es así que, en la actualidad, existen tres enfoques principales para su detección: basados en vibración, basados en reconstrucción en 3D y métodos basados en visión (Arjapure & Kalbande, 2020). Dentro de estos enfoques se han empleado varias técnicas: inteligencia artificial (Tithi et al, 2021;Yebes et al, 2021) y su subcampo aprendizaje de máquinas (Egaji et al, 2021;Kandoi et al, 2021;Shah et al, 2021;Yik et al, 2021), redes neuronales (Kempaiah et al, 2022;Rahman et al, 2022) tales como convolucional (Agrawal et al, 2021;Fan, Wang, et al, 2021;Kharel & Ahmed, 2022; S. S. Park et al, 2021;Patra et al, 2021;Pratama et al, 2021;Rahman et al, 2022), aprendizaje profundo (Bhavya et al, 2021;Kempaiah et al, 2022;Li & Liu, 2021;Shah et al, 2021) y visión por computadora (Camilleri & Gatt, 2020;Fan, Wang, et al, 2021;Kharel & Ahmed, 2022;Riedl et al, 2020), utilizando principalmente el procesamiento de imágenes computarizadas (Muhammad Hanif et al, 2020;Tithi et al, 2021;Wang, 2021). También se han utilizado videos (Javed et al, 2021;Tithi et al, 2021), imágenes térmicas (S. Gupta et al, 2020), o imágenes aéreas (Han et al, 2020), imágenes de UAV (Becker1 et al, 2019), tecnología láser (Li & Liu, 2021;Ravi et al, 2020;Srivastava et al, 2020), tecnología LiDAR (J. S.…”
Section: Introductionunclassified