Infrared active colloidal
semiconducting nanocrystals (NCs) are
important for applications including photodetectors and photovoltaics.
While much research has been conducted on nanocrystalline materials
such as the Pb and Hg chalcogenides, less toxic alternatives such
as SnTe have been far less explored. Previous synthetic work on SnTe
NCs have characterized photophysical properties of the nanoparticles.
This study focuses on understanding the fundamental chemical mechanisms
involved in SnTe NC formation, with the aim to improve synthetic outcomes.
The solvent oleylamine, common to all SnTe syntheses, is found to
form a highly reactive, heteroleptic Sn-oleylamine precursor that
is the primary molecular Sn species initiating NC formation and growth.
Further, the capping ligand oleic acid (OA) reacts with this amine
to produce tin oxide (SnO
x
), facilitating
the formation of an NC SnO
x
shell. Therefore,
the use of OA during synthesis is counterproductive to the formation
of stoichiometric SnTe nanoparticles. The knowledge of chemical reaction
mechanisms creates a foundation for the production of high-quality,
unoxidized, and stoichiometric SnTe NCs.