Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Metal azido complexes are of general interest due to their high energetic properties, and platinum azido complexes in particular because of their potential as photoactivatable anticancer prodrugs. However, azido ligands are difficult to probe by NMR spectroscopy due to the quadrupolar nature of (14)N and the lack of scalar (1)H coupling to enhance the sensitivity of the less abundant (15)N by using polarisation transfer. In this work, we report (14)N and (15)N NMR spectroscopic studies of cis,trans,cis-[Pt(N(3))(2)(OH)(2)(NH(3))] (1) and trans,trans,trans-[Pt(N(3))(2)(OH)(2)(X)(Y)], where X=Y=NH(3) (2); X=NH(3), Y=py (3) (py=pyridine); X=Y=py (4); and selected Pt(II) precursors. These studies provide the first (15)N NMR data for azido groups in coordination complexes. We discuss one- and three-bond J((15)N,(195)Pt) couplings for azido and am(m)ine ligands. The (14)N(α) (coordinated azido nitrogen) signal in the Pt(IV) azido complexes is extremely broad (W(1/2)≈2124 Hz for 4) in comparison to other metal azido complexes, attributable to a highly asymmetrical electric field gradient at the (14)N(α) atom. Through the use of anti-ringing pulse sequences, the (14)N NMR spectra, which show resolution of the broad (14)N(α) peak, were obtained rapidly (e.g., 1.5 h for 10 mM 4). The linewidths of the (14)N(α) signals correlate with the viscosity of the solvent. For (15) N-enriched samples, it is possible to detect azido (15)N resonances directly, which will allow photoreactions to be followed by 1D (15)N NMR spectroscopy. The T(1) relaxation times for 3 and 4 were in the range 5.7-120 s for (15)N, and 0.9-11.3 ms for (14)N. Analysis of the (1)J((15)N,(195)Pt) coupling constants suggests that an azido ligand has a moderately strong trans influence in octahedral Pt(IV) complexes, within the series 2-pic
Metal azido complexes are of general interest due to their high energetic properties, and platinum azido complexes in particular because of their potential as photoactivatable anticancer prodrugs. However, azido ligands are difficult to probe by NMR spectroscopy due to the quadrupolar nature of (14)N and the lack of scalar (1)H coupling to enhance the sensitivity of the less abundant (15)N by using polarisation transfer. In this work, we report (14)N and (15)N NMR spectroscopic studies of cis,trans,cis-[Pt(N(3))(2)(OH)(2)(NH(3))] (1) and trans,trans,trans-[Pt(N(3))(2)(OH)(2)(X)(Y)], where X=Y=NH(3) (2); X=NH(3), Y=py (3) (py=pyridine); X=Y=py (4); and selected Pt(II) precursors. These studies provide the first (15)N NMR data for azido groups in coordination complexes. We discuss one- and three-bond J((15)N,(195)Pt) couplings for azido and am(m)ine ligands. The (14)N(α) (coordinated azido nitrogen) signal in the Pt(IV) azido complexes is extremely broad (W(1/2)≈2124 Hz for 4) in comparison to other metal azido complexes, attributable to a highly asymmetrical electric field gradient at the (14)N(α) atom. Through the use of anti-ringing pulse sequences, the (14)N NMR spectra, which show resolution of the broad (14)N(α) peak, were obtained rapidly (e.g., 1.5 h for 10 mM 4). The linewidths of the (14)N(α) signals correlate with the viscosity of the solvent. For (15) N-enriched samples, it is possible to detect azido (15)N resonances directly, which will allow photoreactions to be followed by 1D (15)N NMR spectroscopy. The T(1) relaxation times for 3 and 4 were in the range 5.7-120 s for (15)N, and 0.9-11.3 ms for (14)N. Analysis of the (1)J((15)N,(195)Pt) coupling constants suggests that an azido ligand has a moderately strong trans influence in octahedral Pt(IV) complexes, within the series 2-pic
Nach 'H-und I3C-Kernen ist in der Organischen und Bioorganischen Chemie der Stickstoff-Kern die wichtigste NMR-Sonde bei strukturchemischen Studien. Lange Zeit jedoch verzichtete man auf die Stickstoff-NMR-spektroskopische Untersuchung groBerer Molekulewar sie doch mit einem zweifachen Handicap behaftet: Zum einen storte das elektrische Quadrupolmoment der I4N-Kerne, zum anderen war die natiirliche Haufigkeit des lsotops "N zu gering. Neue Aufnahmetechniken wie Pulssequenzen und .Polarisationstransfer lbsten zusammen mit der Verwendung gro13erer Probenkbpfe und immer starkerer Magnetfelder weitgehend das Problem der geringen NMR-Empfindlichkeit des "N-Kerns und bewirkten eine vehemente Entwicklung der "N-NMR-Spektroskopie. Diese gewahrt inzwischen vielseitige Einblicke in die Molekulstruktur in isotroper und anisotroper Phase. Ihr Anwendungspotential reicht von der Anorganischen uber die Metallorganische und Organische Chemie bis hin zur Biochemie und Molekularbiologie. Untersucht werden z. B. reaktive Zwischenprodukte, der Metabolismus von Stickstoffverbindungen sowie Biopolymere und Enzym-Inhibitor-Komplexe, wobei gerade die Kombination mit 2D-NMR-Techniken besonders detaillierte Studien ermbglicht. Tatsachlich nahrnenProctor und YuIZ1 bereits in den Kin-Anyuw. Chem. 98 11986) 381-412 0 VCH Verlagsgesellschafl mhl!. D-h940 Weinheim. 1986 W44-8249/86/0505-0381$ 02.50/0 vo= -4.93 im 'SN,lH-Spinsystem. Aus Gleichung (a) geht hervor, daR dieser (negative) Intensitatsgewinn sich nur dann voll auswirkt, wenn T , ausschliehlich von Dipol-Dipol-Wechselwirkungen bestimmt wird, also bei NH2-und NH-Gruppen, und dann zur Signal-Inversion fiihrt (Abb. 2) (M,=z-Magnetisierung; K=z-Magnetisierung im thermischen Gleichgewicht, Ty"=Zeitkonstante der Dipol-Dipol-Relaxation). 7"=0.5 . (-9.86) = -4.93Wie Abbildung 2a zeigt, kann mangelnde dipolare Relaxation bei tertiaren N-Atomen zur Signalloschung fiihren. Um dieses gerade bei N-Heterocyclen haufig beobachtete Phanomen auszuschliehen, unterdriickt man bereits wahrend der Messung bewul3t den Aufbau des NOE-Effekts, indem man nur wahrend der Acquisitionszeit Leistung 382 Angew. Chem. 98 (1986) 381-412 Angew. Chem. 98 (1986) 381-412
The nitrogen nucleus is the third most important probe (after ' H and I3C) for structural investigations of organic and bioorganic molecules by NMR spectroscopy. For a long time, however, the insufficient sensitivity and low natural abundance of the I5N isotope hampered detection of the I5N nucleus, and the quadrupolar I4N nucleus proved unsuitable for the study of larger molecules with several nonequivalent nitrogen atoms. The advent of new techniques, such as pulse sequences and polarization transfer, in conjunction with the use of high-field magnets and large-sample probe heads largely solved the detection problem. As a result, the last few years have seen a dramatic development of "N-NMR spectroscopy as a versatile method for studying molecular structure, both in isotropic (liquid) and anisotropic (solid) phases. The scope of chemical applications extends from inorganic, organometallic, and organic chemistry to biochemistry and molecular biology, and includes the study of reactive intermediates, biopolymers, enzyme-inhibitor complexes, and nitrogen metabolism. Two-dimensional NMR techniques offer additional possibilities for detailed studies of biological systems. Pages 383-486Angew Chem. Inr. Ed. Engl. 25 (1986) 383-413 0 VCH Verlagsgesellschajl mbH. 0-6940 Weinheim. 1986 0S70-0833/86/05~15-0383 . $ 02.50/0 Anyen, Chem. Int. Ed. Engl. 25 (1986) 383-413
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.