A computational approach to conformational analysis is applied to the study of transition metal coordination complexes. The method provides a means of rapidly exploring conformational space without any inherent reliance on energy calculations and is therefore applicable to a wide variety of systems. It has been incorporated into an algorithm which explores the constitutional, configurational and conformational degrees of freedom for a metal ion and a number of potential ligands. The program determines which of the possible coordination complex products could form stable conformations and can therefore be used to rationalise the products obtained from the mixture. The method is illustrated using two cases: the cobalt(III)-triethylenetetramine-glycine system and complexes of diindolopyridine derivatives.