This document introduces a new class of adaptive filters, namely GeometricAlgebra Adaptive Filters (GAAFs). Those are generated by formulating the underlying minimization problem (a least-squares cost function) from the perspective of Geometric Algebra (GA), a comprehensive mathematical language well-suited for the description of geometric transformations. Also, differently from the usual linear algebra approach, Geometric Calculus (the extension of Geometric Algebra to differential calculus) allows to apply the same derivation techniques regardless of the type (subalgebra) of the data, i.e., real, complex-numbers, quaternions etc. Exploiting those characteristics, among others, a general leastsquares cost function is posed, from which two types of GAAFs are designed. The first one, called standard, provides a generalization of regular adaptive filters for any subalgebra of GA. From the obtained update rule, it is shown how to recover the following least-mean squares (LMS) adaptive filter variants: real-entries LMS, complex LMS, and quaternions LMS. Mean-square analysis and simulations in a system identification scenario are provided, showing almost perfect agreement for different levels of measurement noise. The second type, called pose estimation, is designed to estimate rigid transformations -rotation and translation -in n-dimensional spaces. The GA-LMS performance is assessed in a 3-dimensional registration problem, in which it is able to estimate the rigid transformation that aligns two point clouds that share common parts.