This paper aims at providing an updated overview of the main achievements in the development of solar cells based on Cu 2 ZnSn(S,Se) 4 (CZTS(Se)) Kesterite absorbers obtained by electrodeposition. Although undoubtedly challenging, the ultimate goal is to learn from the past works and build a solid framework for future advances in this field. What is the reason for the lower efficiency of electrodeposited CZTS(Se)-based devices (8%) compared to the world record efficiency achieved with a hydrazine-based solution approach (12.6%)? Can this gap be filled, or there are intrinsic limitations for this achievement? The review is divided into the three main electrodeposition approaches: sequential elemental layer, alloy co-deposition, and chalcogenide co-deposition. It is argued that considerable technical challenges must be overcome for the latter approach to be successfully applied.Plot of the record power conversion efficiencies of Kesterite sulfide-based solar cells obtained by electrodeposition (hollow dots), and world record efficiency of CZTS(Se)-based devices (full dots). The dashed line shows the 15% minimum efficiency threshold considered relevant for potential industrial application.