Controlled vacuum environments as in space applications represent a challenge for the lubrication of tribological components. In addition to common space lubricant requirements like, e.g., low evaporation, a broad operational temperature range and a high stability during operation, long-term-storage (LTS) properties have gained increasing attention recently. The term addresses the time-dependent stability of a lubricant under static conditions, which can mean chemical degradation processes such as oxidation on the one hand, but also the physical separation of oil and thickener in heterogeneous lubricants like greases. Due to the extended storage periods of lubricated components on-ground but also during a space mission for several years, it has to be ensured that a lubricant is still functional after LTS. This article depicts the development of a space lubricant grease with LTS properties. Firstly, LTS requirements and methods for their assessment are discussed. In the following, a systematic approach towards the design of a grease formulation compatible with LTS is described. Finally, the manufacturing of prototype formulations and their broad characterization by means of LTS behaviour, outgassing, and tribological performance is presented.