Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Summary Investigation of the effectiveness of matrix-stimulation treatments for removing drilling-induced damage in the Akita region of northern Japan is of interest because of the presence of large quantities of acid-sensitive minerals, such as analcime. A feasibility study of the subcommercial field redevelopment in the Kita-Akita Oil Field, one of the satellite fields of the main Yabase Oil Fields that produced from 1957 to 1973 and was plugged and abandoned, was conducted. As a part of the studies, matrix-acidizing laboratory experiments were performed. Conventional mud acids and formic-acid-based organic-mud-acid systems cause significant permeability damage because of the instability of analcime when exposed to these acids. This study focuses on the development of a treatment fluid that removes drilling-induced damage and is also compatible with the formation. Petrology studies and core flow tests were used in conjunction with geochemical modeling to achieve this objective. A petrographic analysis on the untreated cores showed abundant tuffaceous pore-filling mineral phases, ranging from 12 to 20% in volume. Smectite clay and microcrystalline quartz are the major constituents present as alteration products of volcanic glass. Analcime was present in significant quantities in all samples tested. Six core flow tests were performed on formation cores to optimize the acid preflush and main acid stage. Permeability change resulting from treatment fluids was recorded for the tests. Chemical analysis of the effluent was performed on three core flow tests. Core samples before and after acidization were characterized on the basis of thin section, X-ray diffraction (XRD), scanning electron microscopy (SEM), and mineral mapping. Core flow tests with conventional retarded organic mud acid (ROMA) resulted in only 75% retained permeability. The permeability damage by the ROMA was surprising, because it usually performs well in acid-sensitive formations. A chelant-based retarded mud acid was tested next and resulted in minor formation damage. It can be potentially used in a field treatment, because its high dissolving power is expected to more than compensate for the damage. The highest retained permeability was obtained with an acetic-hydrofluoric (HF) acid system. It was successfully able to remove drilling-induced damage and was also compatible with the native mineralogy. Core flow tests were used to calibrate the permeability/porosity relationship used in the geochemical simulator. The geochemical simulator was then used to predict the field-level acid response. The analytic methods presented are general enough to be of interest to sandstone-acidizing studies, where detailed analysis is needed for damage identification and removal. The fluids developed for this formation are good candidates for other formations where conventional acid systems have not performed well. This study also highlights a close collaboration between the operator and the service company to find a workable solution to a challenging stimulation requirement.
Summary Investigation of the effectiveness of matrix-stimulation treatments for removing drilling-induced damage in the Akita region of northern Japan is of interest because of the presence of large quantities of acid-sensitive minerals, such as analcime. A feasibility study of the subcommercial field redevelopment in the Kita-Akita Oil Field, one of the satellite fields of the main Yabase Oil Fields that produced from 1957 to 1973 and was plugged and abandoned, was conducted. As a part of the studies, matrix-acidizing laboratory experiments were performed. Conventional mud acids and formic-acid-based organic-mud-acid systems cause significant permeability damage because of the instability of analcime when exposed to these acids. This study focuses on the development of a treatment fluid that removes drilling-induced damage and is also compatible with the formation. Petrology studies and core flow tests were used in conjunction with geochemical modeling to achieve this objective. A petrographic analysis on the untreated cores showed abundant tuffaceous pore-filling mineral phases, ranging from 12 to 20% in volume. Smectite clay and microcrystalline quartz are the major constituents present as alteration products of volcanic glass. Analcime was present in significant quantities in all samples tested. Six core flow tests were performed on formation cores to optimize the acid preflush and main acid stage. Permeability change resulting from treatment fluids was recorded for the tests. Chemical analysis of the effluent was performed on three core flow tests. Core samples before and after acidization were characterized on the basis of thin section, X-ray diffraction (XRD), scanning electron microscopy (SEM), and mineral mapping. Core flow tests with conventional retarded organic mud acid (ROMA) resulted in only 75% retained permeability. The permeability damage by the ROMA was surprising, because it usually performs well in acid-sensitive formations. A chelant-based retarded mud acid was tested next and resulted in minor formation damage. It can be potentially used in a field treatment, because its high dissolving power is expected to more than compensate for the damage. The highest retained permeability was obtained with an acetic-hydrofluoric (HF) acid system. It was successfully able to remove drilling-induced damage and was also compatible with the native mineralogy. Core flow tests were used to calibrate the permeability/porosity relationship used in the geochemical simulator. The geochemical simulator was then used to predict the field-level acid response. The analytic methods presented are general enough to be of interest to sandstone-acidizing studies, where detailed analysis is needed for damage identification and removal. The fluids developed for this formation are good candidates for other formations where conventional acid systems have not performed well. This study also highlights a close collaboration between the operator and the service company to find a workable solution to a challenging stimulation requirement.
Investigation of the effectiveness of matrix stimulation treatments for removing drilling induced damage in Akita region in northern Japan is of interest due to the presence of large quantities of acid-sensitive minerals, such as analcime. Feasibility study of the sub-commercial field redevelopment in the Kita-Akita oil field, one of the satellite fields of main Yabase oil fields, which produced from 1957 to 1973, and were plugged and abandoned, were conducted. As a part of the studies, matrix acidizing laboratory experiments were performed. Conventional mud acids and formic-based organic mud acid systems cause significant permeability damage due to instability of analcime in these acids. This study focuses on the development of a treatment fluid that removes drilling-induced damage and is also compatible with the formation. Petrology studies and core flow tests were used in conjunction with geochemical modeling to achieve this objective. A petrographic analysis on the untreated cores showed abundant tuffaceous pore-filling mineral phases, ranging from 12 to 20% in volume. Smectite clay and microcrystalline quartz are the major constituents as alteration products of volcanic glass. Analcime was present in significant quantities in all samples tested. Six core flow tests were performed on formation cores to optimize the acid preflush and main acid stage. Permeability change due to the treatment fluids was recorded for the tests. Chemical analysis of the effluent was performed on three core flow tests. Core samples before and after acidization were characterized based on thin section, X-ray diffraction (XRD), scanning electron microscopy(SEM) and mineral mapping. Core flow tests with a conventional retarded organic mud acid resulted in only a 75% retained permeability. The permeability damage by the retarded organic mud acid was surprising because it usually performs well in acid-sensitive formations. A chelant based retarded mud acid was tested next and resulted in minor formation damage. It can potentially be used in a field treatment as its high dissolving power is expected to more than compensate for the damage. The highest retained permeability was obtained with an acetic-HF acid system. It was successfully able to remove drilling-induced damage and was also compatible with the native mineralogy. Core flow tests were used to calibrate permeability-porosity relationship used in the geochemical simulator. The geochemical simulator was then used to predict field-level acid response. The analytic methods presented are general enough to be of interest to sandstone acidizing studies where detailed analysis is needed for damage identification and removal. The fluids developed for this formation area good candidates for other formations where conventional acid systems have not performed well. This study also highlights close collaboration between an operator and service company to find a workable solution to a challenging stimulation requirement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.