2023
DOI: 10.1016/j.applthermaleng.2022.119633
|View full text |Cite
|
Sign up to set email alerts
|

Applications of machine learning to the analysis of engine in-cylinder flow and thermal process: A review and outlook

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2025
2025

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(1 citation statement)
references
References 143 publications
0
1
0
Order By: Relevance
“…Machine Learning (ML)-based surrogate modeling of internal combustion engines (ICE) has been widely used for a broad range of applications. 25–29 Data-driven ML approaches, in particular, are popular for building ICE surrogate models; such approaches include neural networks (NN), 3045 Support Vector Machines (SVM), 4649 Gaussian Processes (GPs, 5060 also known as kriging 61 ), and other learning models. 6268 In surrogate modeling applications with limited training runs from expensive simulators, GPs (and its recent non-stationary extensions) have several key advantages over alternate deep learning models.…”
Section: Introductionmentioning
confidence: 99%
“…Machine Learning (ML)-based surrogate modeling of internal combustion engines (ICE) has been widely used for a broad range of applications. 25–29 Data-driven ML approaches, in particular, are popular for building ICE surrogate models; such approaches include neural networks (NN), 3045 Support Vector Machines (SVM), 4649 Gaussian Processes (GPs, 5060 also known as kriging 61 ), and other learning models. 6268 In surrogate modeling applications with limited training runs from expensive simulators, GPs (and its recent non-stationary extensions) have several key advantages over alternate deep learning models.…”
Section: Introductionmentioning
confidence: 99%